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Abstract
Starting from a generalized response theory, the inverse response function
can be expressed in terms of equilibrium correlation functions for which a
perturbation expansion is carried out. In the long-wavelength limit, this can
be exploited to obtain an approximation for the dynamic collision frequency.
Utilizing the Mermin ansatz, the dynamical structure factor is determined from
the long-wavelength limit. The results are compared with classical simulation
data. Different effective potentials which model the electron–ion interaction
are discussed. It is shown that the high-frequency behaviour of the dynamic
collision frequency is sensitive to the form of the chosen interaction.

PACS numbers: 52.25.Mq, 52.27.Gr, 52.38.−r, 52.38.Dx

1. Dielectric function and dynamic collision frequency

The dielectric function ε(�k, ω) describing the response of a charged many particle system to
an external, time- and space-dependent electric field is related to various phenomena such as
optical absorption of light, collective excitations, dynamic screening, compressibility, dynamic
structure factor, dynamic electrical conductivity and diffusion. The dielectric function

ε(�k, ω) = 1 − �(�k, ω)

ε0k2
= 1 +

iσ(�k, ω)

ε0ω
= 1

1 + χ(�k, ω)/(ε0k2)
(1)

can be expressed in terms of the polarization function �(�k, ω) or in terms of the response
function χ(�k, ω). It is related to the dynamic electrical conductivity σ(�k, ω) via Ampere’s
law. The response function

χ(�k, ω) = iβ�0
k2

ω

1

M(�k, ω)
(2)
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is connected to an inverse response function M(�k, ω), which can be expressed in terms of
equilibrium correlation functions [1] allowing for a systematic evaluation within a perturbation
theory [2, 3]1. Although the response function M(�k, ω) can be evaluated at arbitrary values
of k, the calculation is tedious. Instead, we perform a perturbative evaluation in the long-
wavelength limit and use the Mermin approach [8] to obtain values for χ at finite k. The
dynamic collision frequency ν(ω) can be introduced taking the long-wavelength limit k → 0
of the dielectric function leading to a generalized Drude formula [4]

ε(ω) = 1 − ω2
pl

ω(ω + iν(ω))
(3)

where the dynamic collision frequency is given as

ν(ω) = −ε0ω
2
pl

β�0
lim
k→0

M(�k, ω) + iω

(
1 − ω2

pl

ω2

)
. (4)

According to (1), the dynamic conductivity σ(ω) = iε0ω
2
pl

/
[ω + iν(ω)] can be obtained from

the collision frequency. For further analysis, we consider a fully ionized hydrogen plasma(
ne = ni, e

2
e = e2

i = e2
)

in adiabatic limit mi/me → ∞.
In a one-moment approach we use the electrical current–density �J el

k =
�−1

0

∑
c,p ec/mch̄ �pnc

p,k , where c = e, i, as a relevant observable, see [4]. After performing
an expansion of the inverse response function with respect to the interaction, the collision
frequency is obtained from a force–force correlation function according to

ν(ω) = β�0

ε0ω
2
pl

〈 �̇J el
0 ; �̇J el

0

〉irred
ω+iη. (5)

The force–force correlation
〈 �̇J el

0 ; �̇J el
0

〉irred
ω+iη (see footnote 2) itself can be expressed in terms

of the interaction potential, which is equivalent to a four-particle Green function G(ω). The
correlation function is defined as

〈A; B〉z = i

βZ

∫ ∞

0
dt eizt

∫ β

0
dτ Tr[ρ0A(t − ih̄τ )B†] (6)

where ρ0 is the equilibrium statistical operator and Z is the partition function, for details
see [4]. Thus, the technique of thermodynamic Green functions can be used to perform a
systematic perturbative treatment of the collision frequency for non-ideal plasmas. Performing
partial summations, the Green function was evaluated in different approximations, see [4, 5],
e.g., considering the effects of static screened interaction νBorn,s(ω), dynamically screened
interaction νLB(ω) and strong collisions (T-matrix) νT,s(ω), treated in a static approximation.
As an example, the collision frequency accounting for dynamic screening of the potential
Vei(q) is quoted here

νLB(ω) = i
ε0�

2
0

6π2e2me

∫ ∞

0
dq q6V 2

ei(q)
ε−1

RPA(q, ω) − ε−1
RPA(q, 0)

ω
. (7)

The quantity εRPA(q, ω) denotes the dielectric function in random phase approximation (RPA).
Due to momentum conservation, there is no contribution from the interaction between particles
of the same species in this one-moment approach.

Following an approach by Gould and DeWitt [6], dynamical screening and strong
collisions are accounted for by an interpolation scheme [5]

ν ≈ νBorn,s + (νT,s − νBorn,s) + (νLB − νBorn,s). (8)
1 �0 is the normalization volume.
2 The index irred indicates that only those diagrams contribute to the correlation function, which cannot be separated
into two pieces by cutting a single interaction line.
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Figure 1. Left: frequency dependence of the real part of the collision frequency ν(ω) for a
hydrogen plasma with n = 1.51 × 1025 cm−3 and T = 573 eV corresponding to  = 0.1.
Different approximations [5] are compared. Right: dynamical collision frequency ν(ω) modified
by the renormalization factor compared to the unrenormalized collision frequency ν(P0)(ω) and
numerical simulations, according to the approach in [7].

In this way, the leading order of the collision frequency is dynamically screened, whereas
higher diagrams are statically screened. The approximations are compared in figure 1. As can
be seen from the figure, the dynamic and static screening results almost coincide with the high-
frequency limit. In this way, the Gould–DeWitt result is dominated by the contribution from
strong collisions. The peak in the dynamic screening result close to the plasma frequency is
due to the emergence of plasmon excitations. It is modified, if scattering is taken into account.

Electron–electron collisions can be integrated into our approach by inclusion of higher
moments. These effects give rise to a frequency-dependent renormalization factor [4]. A
multiplication of the one-moment result by the renormalization factor leads to a dynamic
collision frequency reproducing the correct static limit and dc conductivity. In figure 1,
the real part of the modified collision frequency is compared to molecular dynamics (MD)
simulation data. These have been calculated using a code by Pfalzner and Gibbon [7]. For low
frequencies, the renormalized collision frequency is decreased compared to the unmodified
one, while for frequencies higher than about ωpl, the collision frequency is increased. The
perturbative results are consistent with the MD data for large frequencies whereas discrepancies
arise at small frequencies. It should be noted that the theoretical results are obtained by a
quantum mechanical calculation using the Coulomb interaction, while the simulation data are
obtained by a classical simulation [7] with a soft-core potential discussed in the next section.

The calculation of the collision frequency can be extended to finite wave vectors k.
However, to avoid tedious calculations, the structure factor at finite k is calculated with
a generalized Mermin ansatz [8] using the dynamic collision frequency (7) instead of a
frequency-independent relaxation time τ . The response function is given by

χ(k, ω) =
(

1 − iω

ν(ω)

)
χ0(k, ω + iν(ω))χ0(k, 0)

χ0(k, ω + iν(ω)) − iω/ν(ω)χ0(k, 0)
(9)

where χ0(k, z) represents the RPA susceptibility. As shown in [10], the Mermin ansatz can
be derived within the framework of the generalized linear response theory. It fulfils first-order
sum rules and reproduces the generalized Drude response function in the long-wavelength
limit. Thus, it is a consistent ansatz to extrapolate results obtained at k → 0 to finite k.
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Table 1. Effective potentials.

Deutsch-like [11] Soft-core [7] Error function [12]

V D
cd(r) = eced

4πε0�0

1−exp(−r/�cd )
r

V S
cd(r) = eced

4πε0�0

1
(r2+�2

cd
)1/2 V E

cd(r) = eced
4πε0�0

1
r
Erf( r

�cd
)

2. Effective potentials

Performing MD simulations, it is necessary to introduce a quasi-classical effective interaction
instead of the Coulomb interaction to avoid the Coulomb-implosion and to model quantum
effects. For a comparison of theoretical results and simulation, it is essential to calculate
the considered quantities on the same level of approximation and with the same interaction
potential. Thus, we also introduce effective potentials in our theoretical approach. Some
often used effective potentials are shown in table 1. These potentials have no singularity at
the origin (soft-core potentials) and reproduce the Coulomb potential for large distances. The
behaviour for small distances is determined by the free parameter �cd which has to be chosen
in a proper way, e.g., as a thermal wavelength, in order to mimic quantum effects.

Using these effective interactions, a dynamic collision frequency ν(ω) can be calculated
in the same way as before. Some qualitative properties of the dynamic collision frequency, for
instance, the peak in the dynamically screened result, remain unaffected by the choice of the
potential. Although the potentials show similar characteristics (see figure 2), the asymptotic
behaviour of the dynamic collision frequency varies strongly. An analysis of (7) for the
high-frequency asymptote leads for a Deutsch-like potential to

νD(ω → ∞) ∼ 1

�4
cd (h̄ω)7/2

(10)

for a soft-core potential to

νS(ω → ∞) ∼ �cd

(h̄ω)3/2
exp

{
−�cd

√
8meω

h̄

}
(11)

and using the error function potential to

νE(ω → ∞) ∼ 1√
a(h̄ω)3/2

exp

{
− h̄ω

2kBT
(a − 1)

}
a =

√
1 +

4kBT me

h̄2 �2
cd . (12)

For comparison, the asymptotic behaviour using the Coulomb potential is proportional to
(h̄ω)−3/2. The numerical results for the dynamically screened collision frequency (7) applying
effective interactions and the respective asymptotes are shown in figure 2. The collision
frequencies show a strongly varying high-frequency behaviour in agreement with the analytic
asymptotes.

Furthermore, the free parameter �cd affects the collision frequency. The smaller this
parameter the greater the dynamic collision frequency. In the limit �cd → 0, which has to
be calculated before executing the frequency limit, the collision frequency for the Coulomb
potential is reproduced.

3. Dynamic structure factor: comparison with simulation

The fluctuation dissipation theorem, here in the classical limit,

S(k, ω) = −kBT

nω
Im χ(k, ω) = −ε0kBT

n

k2

ω
Im ε−1(k, ω) (13)
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Figure 2. Left: comparison of Coulomb potential and some quasi-classical effective potentials
used in simulations. Right: frequency dependence of the real part of the collision frequency
ν(ω) (7) for different dynamical screened potentials. Parameters are the same as in figure 1. For
comparison, the respective asymptotes are shown as thin lines.
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Figure 3. Left: dynamic structure factor S(k,ω) for an electron–proton model plasma with a
Deutsch-like effective interaction in RPA (dashed line) and in Mermin-like approximation which
utilizes a dynamically screened collision frequency ν�,RPA(ω) [9] (solid line). Note that the RPA
approximation does not reproduce the simulation data. Accounting for dynamic screening in the
collision frequency is essential for a reasonable agreement. Right: log–log plot of the dynamic
structure factor. In the high-frequency limit, a 1/ω7.5 asymptote is predicted for a two-component
plasma with a Deutsch-like effective potential. For comparison, this asymptote is shown as dashed–
dotted line.

relates the imaginary part of the density response function (2) to the dynamic structure factor
S(k, ω) [13]. Thus, we can compare our results with classical MD simulations for the dynamic
structure factor of a two-component plasma-like system calculated by Zwicknagel [14]. In
their MD simulations a Deutsch-like effective interaction (table 1) is used. Using the Mermin
ansatz (9) and the collision frequency (7), we are able to calculate a dynamic structure factor
for given plasma conditions and wave vectors [8]. A comparison of our theoretical results
with the simulation results shows a good agreement, see figure 3.

An objective of this work is the study of the high-frequency behaviour of the structure
factor. Using the high-frequency expansion for the inverse of the dielectric function (3) we
obtain

S(k, ω→∞) ≈ kBT

me

k2 Re ν(ω)

ω4
(14)
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for the asymptotic behaviour. The structure factor is proportional to the real part of the
dynamic collision frequency and thus strongly dependent on the used interaction, as described
in the previous section. With the asymptote (10) follows

S(k, ω→∞) ∼ kBT

me

k2 1

ω15/2
(15)

for a Deutsch-like potential. As is shown in the right graph of figure 3, the simulation data
agree well with our analytical expressions.

4. Conclusion

Starting from a generalized linear response theory for the dielectric function we calculate a
complex dynamic collision frequency in the long-wavelength limit. The collision frequency is
obtained as a force–force correlation function, which we evaluate in different approximations.
We combine these approximations in a Gould–DeWitt scheme to account for dynamical
screening and strong collisions. We compare our dynamic collision frequency with results
obtained by classical MD simulations. Furthermore, we extend our approach to quasi-classical
effective interactions, however, neglecting effects of degeneracy and bound state formation.
The newly calculated dynamic collision frequencies differ strongly in dependence on the
applied potential. A good agreement with MD simulations for a Deutsch-like potential is
found. Simulations for the other effective interactions and a classical calculation of the
dynamic collision frequency are in progress.
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[4] Reinholz H, Redmer R, Röpke G and Wierling A 2000 Phys. Rev. E 62 5648
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